

DPP - 2 (Circular Motion)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/39

https://youtu.be/Sf5hUumYGfc

https://physicsaholics.com/note/notesDetalis/42

Q 1. Starting from rest, a particle rotates in a circle of radius $\mathrm{R}=2 \mathrm{~m}$ with an angular acceleration $\alpha=\frac{\pi}{4} \mathrm{rad} / \mathrm{s}^{2}$. The magnitude of average velocity of the particle over the time it rotates quarter circle is:
(a) $2 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $\sqrt{2} \mathrm{~m} / \mathrm{s}$
(d) $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Q 2. Two particles P and Q are moving as shown in the figure. At this moment of time the angular speed of P w.r.t. Q is:

(a) $1 \mathrm{rad} / \mathrm{s}$
(b) $2 \mathrm{rad} / \mathrm{s}$
(c) $5 \mathrm{rad} / \mathrm{s}$
(d) $4 \mathrm{rad} / \mathrm{s}$

Q 3. A ball is projected with $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at angle 45° with horizontal. The angular velocity of the particle at highest point of its journey about point of projection is:
(a) $0.1 \mathrm{rad} / \mathrm{s}$
(b) $0.2 \mathrm{rad} / \mathrm{s}$
(c) $0.3 \mathrm{rad} / \mathrm{s}$
(d) $0.4 \mathrm{rad} / \mathrm{s}$

Q 4. The magnitude of displacement of a particle moving in a circle of radius a with constant angular speed ω varies with time t as: The tangential and angular acceleration of a particle are $10 \mathrm{~m} / \mathrm{sec}^{2}$ and $5 \mathrm{rad} / \mathrm{sec}^{2}$ respectively it will be at a distance from the axis of rotation -
(a) 50 m
(b) $1 / 2 \mathrm{~m}$
(c) 1 m
(d) 2 m

Q 5. A particle moves in a circle of radius 25 cm at angular speed $4 \pi \mathrm{rad} / \mathrm{s}$. The acceleration of particle in $\mathrm{m} / \mathrm{s}^{2}$ is -
(a) π^{2}
(b) $8 \pi^{2}$
(c) $4 \pi^{2}$
(d) $2 \pi^{2}$

Q 6. In a circular motion of a particle the tangential acceleration of the particle is given by $a_{t}=2 t \mathrm{~m} / \mathrm{s}^{2}$. The radius of the circle described is 4 m . The particle is initially at rest. Time after which total acceleration of the particle makes 45° with radial acceleration is:
(a) 1 sec
(b) 2 sec
(c) 4 sec
(d) 8 sec

Q 7. A particle moves along a circle if radius $\frac{20}{\pi} \mathrm{~m}$ with constant tangential acceleration. If the velocity of the particle is $80 \mathrm{~m} / \mathrm{s}$ at the end of the second revolution after motion has begun the tangential acceleration is:
(a) $40 \mathrm{~m} / \mathrm{s}^{2}$
(b) $640 \mathrm{~m} / \mathrm{s}^{2}$
(c) $160 \mathrm{~m} / \mathrm{s}^{2}$
(d) $80 \mathrm{~m} / \mathrm{s}^{2}$

Q 8. Initial velocity and acceleration of a particles are as shown in the figure. Acceleration vector of particle remain constant. Then radius of curvature of path of particle :

(a) is 9 m initially
(b) is $\frac{9}{2}$ minitially
(c) is $\frac{9}{\sqrt{3}} \mathrm{~m}$ initially
(d) is $\frac{9}{8} \mathrm{~m}$ initially

Q 9. A particle is moving in an isolated $x-y$ plane, At an instant, the particle has velocity $(4 \hat{\imath}+4 \hat{\jmath}) \mathrm{m} / \mathrm{s}$ and acceleration $(3 \hat{\imath}+5 \hat{\jmath}) \mathrm{m} / \mathrm{s}^{2}$. At that instant what will be the radius of curvature of its path?
(a) 16 m
(b) 15 m
(c) $16 \sqrt{2} \mathrm{~m}$
(d) none of these

Q 10. A disc rotates about its axis with a constant angular acceleration of $4 \mathrm{rad} / \mathrm{s}^{2}$. Find the radiat and tangential acceleration of a particle at a distance of 1 cm from the axis at the end of the first second after the disc starts rotating:
(a) $0.16 \mathrm{~m} / \mathrm{s}^{2}, 0.4 \mathrm{~m} / \mathrm{s}^{2}$
(b) $1.6 \mathrm{~m} / \mathrm{s}^{2}, 0.04 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.6 \mathrm{~m} / \mathrm{s}^{2}, 0.4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $0.16 \mathrm{~m} / \mathrm{s}^{2}, 0.04 \mathrm{~m} / \mathrm{s}^{2}$

Answer Key

Q. 1	c	Q. 2	a	Q. 3	b	Q. 4	d	Q. 5	c
Q. 6	b	Q. 7	a	Q. 8	a	Q. 9	c	Q.10	d

